
BitPim

An application in Python

Roger Binns
rogerb@rogerbinns.com

bitpim.org

Motivation
● New cell phone, new features
– Phonebook
– Calendar
– Wallpapers
– Ringtones
– Messaging
– Voice and Text notes ...

bitpim.org

I am human!
● I will not use a number pad
● Sync products limited
– 'Tickbox' phone support
– Phonebook only
– Windows only
– Single machine licenses
– Stupid quirks

● I can do way better J

bitpim.org

M
ar

ch
 0

3

Ap
ril

 0
3

M
ay

 0
3

Ju
ne

 0
3

Ju
ly

 0
3

Au
gu

st
 0

3

Se
pt

em
be

r 0
3

O
ct

ob
er

 0
3

N
ov

em
be

r 0
3

D
ec

em
be

r 0
3

Ja
nu

ar
y

04

Fe
br

ua
ry

 0
4

M
ar

ch
 0

4

Ap
ril

 0
4

M
ay

 0
4

Ju
ne

 0
40

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000

Popularity

Page Views
Downloads

bitpim.org

Scale
● 30,000 lines of Python
● 2,500 lines of description files
– turns into 41,000 lines of generated code

● 500 lines of C/C++
● 20,000 words of online help

bitpim.org

Specifications
● Expose and use all features of my cell

phone
– No protocol documentation at all!

● Let me use it on as many machines as
I want
– cross platform

● Interoperate with other data sources
– No data islands

bitpim.org

More specs
● Let others join the party
– Open source
– Able to add other phones

● Do not be a PIM
– Only have UI where no other program

does
● Be possible to plug into other programs
– deal only with cell phone interfacing

bitpim.org

Even more specs
● Easy to use
● No installation hurdles
– No prerequisites
– No DLL hell
– No RPM dependencies hell

● Easy to diagnose what has happened
on user machines
– Lack of documentation means learning

from the field

bitpim.org

The users don't care
● Users don't care what language you

use
● Users don't care how hard it is to write
● Users don't care what development

methodology you use
● Users don't care about you being

consistent with a platform they don't
use

bitpim.org

The users do care
● Users do care that your program does

what you claim
● .. and they want to use it for as little

time as possible
– Goals, not tasks

bitpim.org

I care
● I care about productivity
– No drudge work thanks!

● I care about refactoring
– Knowledge will change over time

● I care about ease of talking to other
libraries & components
– Productive!

● Active community

bitpim.org

Preaching to the choir
The only solution is

(And some Python libraries)

bitpim.orgbitpim.org

Python!!!

Gui options
● Tkinter û
– Lowest common denominator
– Draws widgets itself
– Unpleasant prior experience
– Stagnant

● Qt û
– High common functionality
– Not open source on Windows
– Draws widgets itself

bitpim.org

Gui options
● GTK û
– Linuxy
– Draws widgets itself

● wxWidgets/wxPython ü
– High common functionality
– Uses native widgets where possible
– Very active community
– Pleasant prior experience

bitpim.org

Distribution
● Has to appear as a 'normal' application

on each platform
● Two steps
– Freezing Python code (confusingly called

installers)
– Installer

bitpim.org

Freezing
● Gather all Python modules, binary

modules and Python interpretter
● And data files you specify
● Launcher stub
– Loads Python interpretter
– Set path for binary modules
– Load Python code from archive (.zip)

● Can be placed anywhere – no need for
installation

bitpim.org

Freezing - Platform
specific

● Windows – py2exe
– Icons
– version_info resource
– COM integration/modules

● Linux – cx-Freeze
– Strip RPATH from wxPython shared libs

● Mac – BundleBuilder
– Some manual specification of shared

libraries to include

bitpim.org

Installation – Platform
specific

● Windows – InnoSetup
– Start Menu
– Uninstall
– Control Panel

● Mac – dmg
– Icon

bitpim.org

Installation – Platform
specific

● Linux – RPM
– provides, requires (be careful of rpmbuild

being too helpful!)
– Files out of the way, launcher shell script
– Menu icon
– $LD_LIBRARY_PATH (cx-Freeze can do this

for you)

bitpim.org

Not that hard!

Common 227

Mac 58
Linux 139

Windows 153

bitpim.org

Serial Ports
● pyserial library
– Windows (win32all)
– Linux & Mac (posix)
– Interface doesn't know/care about

platform
● Full functioned
– Data rates
– Flow control
– DSR/CTS etc

bitpim.org

User friendly serial ports

bitpim.org

User friendly serial ports

bitpim.org

Months of fun!
● Windows – scan registry
– Different on Win9x, Win2k, WinXP
– Good detail (drivers, dates etc)

● Linux
– Device nodes in various directories
– Kernel module associated with major

● Mac
– Device nodes in one directory /dev
– No other information

bitpim.org

USB
● Aka Python/C integration is easy
● Libusb provides good USB access on

Windows, Linux and Mac
● SWIG generates Python code wrapping

C/C++
● Language neutral but best at Python

bitpim.org

SWIG
● SWIG is really good
● Does a good job with raw C/C++

header
● Is actually simpler than it seems
● Can pick up cues from parameter

names (encourage C library
implementors!)
– Binary strings

bitpim.org

C/C++ problems
highlighted

● Who owns memory?
● Global pointers
● Data owned by other data
– May need C++ reference counter

● Poor API design
– Provide Pythonic layer

bitpim.org

Multi-tasking
● Can't do two things at the same time
– Waiting for GUI event
– Talking to device
– Talking to network

● Two approaches
– Event driven
– Threading

bitpim.org

Event driven
● Twisted/asyncore
● Scales well
● Harder to write (“inside out”)
● Every library has to work the same way

bitpim.org

Threading
● Simpler (initially)
● Things can change underneath you
● Harder to deal with exceptions

bitpim.org

And the winner was ...
● Threading
● Decouple threads (and data) as much

as possible
● wxPython event loop integrates well
● Use Queue.Queue to send messages
● wx.PostMessage to send to GUI event

queue

bitpim.org

Sample Code - GUI

def OnGetFile(self):

 ...

 self.makecall(getfile, path, self.OnGetFileResult, path)

def OnGetFileResults(self, path, exception, data):

if exception is not None: raise exception

...

def makecall(self, callfunc, args, resultfunc, resargs):

 self.queue.put((callfunc, args, resultfunc, resargs))

bitpim.org

Sample Code – thread
loop

result=exception=None

callfunc, args, resultfunc, resargs = queue.get()

try:

 result=callfunc(*args)

except:

 exception=sys.exc_info()[1]

wx.PostEvent(RESULT_EVENT,

 (resultfunc, resargs, exception, result))

bitpim.org

Threading and SWIG
// deal with data being returned

int usb_bulk_read_wrapped(usb_dev_handle *dev, int ep, char *bytesoutbuffer,
int *bytesoutbuffersize, int timeout)

 {

 int res;

 Py_BEGIN_ALLOW_THREADS

 res=usb_bulk_read(dev, ep, bytesoutbuffer, *bytesoutbuffersize, timeout);

 Py_END_ALLOW_THREADS

 if (res<=0)

 *bytesoutbuffersize=0;

 else

 *bytesoutbuffersize=res;

 return res;

 }

bitpim.org

Threading gotchas
● Python doesn't have thread priorities
– Nor do the event driven frameworks

● Cannot interrupt a thread
– Have to poll variable
– Use setDaemon for blocking calls (eg

accept)
● Mismatch in producer/consumer rates

can have dire effects
– Update GUI from idle handler

bitpim.org

Threading techniques

● Assertions
– against thread.get_ident()

● Class/instance wrappers
– Forward requests to correct thread
– Thread pooling
– Checking

bitpim.org

Outlook
● If you can do it easily from VB, you can

do it easily from Python (win32all)
● Dynamic module generation at runtime

(cached)
● makepy can generate static module
● Binary distribution favours latter

bitpim.org

Outlook - code

import outlook_com

app=outlook_com.Application()

mapi=app.GetNamespace(“MAPI”)

contacts=mapi.GetDefaultFolder(constants.olFolder)

for i in range(len(contacts.Items)):

 item=contacts.Items[1+i]

 print item.FullName

 print item.MobileTelephoneNumber

bitpim.org

Evolution
● vCards stored in berkely db files (bsddb

module)
● ebook api
– Significant versioning issues
– Significant dependency issues

bitpim.org

vCards
● No mature Python vCard modules
● No data source implements vCards

correctly anyway
● 530 lines for vFile parser and vCard

data converter
● Correctly deals with every correct and

broken vCard I could find

bitpim.org

Wisdom

● Use the highest level language you can
afford, even if you have to write it
yourself
– Intent not implementation

● Higher productivity
● Less hand written code
● Easier to tune

bitpim.org

Protocol description
● Each field is some number of bytes
● Each field has a type
– Marshalled type (eg lsb integer)
– Python type (eg string)

● Some fields are conditional on the
values of others

bitpim.org

Protocol Requirements

 * RESPONSEHEADER header

 1 UINTlsb blockcounter

 1 BOOL thereismore

 * STRING name

 IF thereismore

 4 UINTlsb filesize

 2 UINTlsb datasize

 * DATA data

bitpim.org

Description language
● Use Python syntax!
● tokenize module to parse
● 650 lines of code to generate Python
● 2,500 lines of protocol description
● 41,000 lines of generated code
– with comments
– with checking
– with introspection

bitpim.org

Protocol example

PACKET foobarrequest:

 “a comment”

 * requestheader {'command': 0x04} +header

 1 UINT {'constant': 0} +blocknumber

 if self.blocknumber==0:

 * STRING {'terminator': 0, 'pascal': True} filename

 * LIST {'elementclass': speeddial} +speeddials

bitpim.org

Protocol Visualisation

bitpim.org

Internal representation
of data

● Dicts
– Keys
– Unique ids

● Order
– Lists of dicts
– Really hard to add later

● Be database ready
– SQLite
– Gadfly

bitpim.org

File formats for saving
data

● Human readable is great for
debugging, testing and interoperability
– XML
– Python 'code'

● Concurrent access
● Pretty printed dicts/lists works for me
– (Except concurrent access)

bitpim.org

Data versioning

● Versioning
● Backwards and forwards compatible
if version==1:

 ... convert to 2 ... version=2

if version==2:

 ... convert to 3 ... version=3

if version==3: ... we are happy ...

if version>=4:

 ... do something user friendly ...

bitpim.org

Programmer doc

User documentation
● HTML is king
● Microsoft CHM
– Proprietary archive of compiled HTML

● wxWidgets help
– ZIP archive of HTML

● HelpBlocks
– Produces both
– Preprocessor

bitpim.org

User doc

Web site

Troubleshooting
● Capturing exceptions
– sys.exc_info() -> type, value, traceback

● Frame variables
– Python Cookbook

● Can transfer across threads
● Keep original traceback
– ex.original_exception=sys.exc_info()

bitpim.org

Secure remoting
● Express methods and parameters
● Types important
– int
– string
– dict
– list/tuple

● So are exceptions

bitpim.org

Choices
● Home grown
● IDL
– Corba
– XDR

● XML based
– XML-RPC
– SOAP

bitpim.org

XML-RPC
<?xml version='1.0'?>

<methodCall>

<methodName>add</methodName>

<params>

 <param>

 <value><int>1</int></value>

 </param>

 <param>

 <value><int>2</int></value>

 </param>

</params>

</methodCall>

bitpim.org

XML-RPC
● Has exceptions (aka Faults)
● Interoperates with other languages
● No None
● Well supported in Python standard

library
● HTTP transport in stdlib
– No security (https, authentication)
– One request per connection

bitpim.org

Attempt 1

● http authentication
– Every request

● m2crypto (openssl wrapper)
● Very difficult to prevent connection

closes
– See “useless destructors” thread on c.l.p

● X.509 certificates

bitpim.org

Attempt 2
● Paramiko (SSH library)
● SSH has named channels
● Simple certificates
● Authentication on connection

establishment

bitpim.org

Auto-remoting methods

● __getattr__ to work out name used
● __call__ to invoke with args
● See xmlrpclib._Method
● Be careful!
– A tale of __str__

bitpim.org

Printing
● Html, the universal

panacea
– Automatic flow
– Use templates
– Easy preview
– wx.Html lacks style sheets

● Can also use in UI

bitpim.org

Publish/Subscribe
● Similar to MVC
● Decouples code
● Threading
– Be careful

● Weakrefs

bitpim.org

Debugging

● Print statements
– They tend to stay a long time

● logging module
● Python debugger

import pdb ; pdb.set_trace()

● assert
● Do not throw away exceptions!
● pychecker

bitpim.org

Do early
● Decide on undo implementation
– Transaction log

● Decide on forwards compatibility of
stored data

● Have a test plan
– Stress/boundary
– Normal usage/regression

● Have a position on i18n/l10n
● Use XRC for user interface

bitpim.org

Standing on the
shoulders of others

Python ð language

wxPython ð gui

pyserial ð com ports

Python-DSV ð csv files

HelpBlocks ð Help authoring

SWIG ð Python wrappers

GCC/MinGW ð C/C++ compilers

SourceForge ð Project hosting

libusb/libusb-win32 ð usb access

paramiko ð ssh

win32all ð Windows APIs

ffmpeg ð multi-media format
conversion

InnoSetup ð Windows installer

py2exe ð Windows Python
Freezing

cx-Freeze ð Linux freezing

bitpim.org

Conclusion
● Happy users & developers
● Python productivity
● Open source
● Cross platform
● Plug
– Also try Dotamatic

bitpim.org

